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Abstract—Many complex robot motor skills can be represented
using elementary movements, and there exist efficient techniques
for learning parametrized motor plans using demonstrations and
self-improvement. However, in many cases, the robot currently
needs to learn a new elementary movement even if a parametrized
motor plan exists that covers a similar, related situation. Clearly,
a method is needed that modulates the elementary movement
through the meta-parameters of its representation. In this paper,
we show how to learn such mappings from circumstances to
meta-parameters using reinforcement learning. We introduce an
appropriate reinforcement learning algorithm based on a ker-
nelized version of the reward-weighted regression. We compare
this algorithm to several previous methods on a toy example and
show that it performs well in comparison to standard algorithms.
Subsequently, we show two robot applications of the presented
setup; i.e., the generalization of throwing movements in darts, and
of hitting movements in table tennis. We show that both tasks
can be learned successfully using simulated and real robots.

I. INTRODUCTION

In robot learning, motor primitives based on dynamical
systems [1], [2] allow acquiring new behaviors quickly and re-
liably both by imitation and reinforcement learning. Resulting
successes have shown that it is possible to rapidly learn motor
primitives for complex behaviors such as tennis-like swings
[1], T-ball batting [3], drumming [4], biped locomotion [5],
ball-in-a-cup [6], and even in tasks with potential industrial
applications [7]. The dynamical system motor primitives [1]
can be adapted both spatially and temporally without changing
the overall shape of the motion. While the examples are
impressive, they do not address how a motor primitive can be
generalized to a different behavior by trial and error without
re-learning the task. For example, if the string length has been
changed in a ball-in-a-cup [6] movement1, the behavior has to
be re-learned by modifying the movements parameters. Given
that the behavior will not drastically change due to a string
length variation of a few centimeters, it would be better to
generalize that learned behavior to the modified task. Such
generalization of behaviors can be achieved by adapting the
meta-parameters of the movement representation2.

In machine learning, there have been many attempts to
use meta-parameters in order to generalize between tasks [8].

1In this movement, the system has to jerk a ball into a cup where the ball
is connected to the bottom of the cup with a string.

2Note that the tennis-like swings [1] could only hit a static ball at the end
of their trajectory, and T-ball batting [3] was accomplished by changing the
policy’s parameters.

Figure 1: This figure illustrates a 2D dart throwing task. The
situation, described by the state s corresponds to the relative
height. The meta-parameters γ are the velocity and the angle
at which the dart leaves the launcher. The policy parameters
represent the backward motion and the movement on the arc.
The meta-parameter function γ(s), which maps the state to
the meta-parameters, is learned.

Particularly, in grid-world domains, significant speed-up could
be achieved by adjusting policies by modifying their meta-
parameters (e.g., re-using options with different subgoals) [9].
In robotics, such meta-parameter learning could be particularly
helpful due to the complexity of reinforcement learning for
complex motor skills with high dimensional states and actions.
The cost of experience is high as sample generation is time
consuming and often requires human interaction (e.g., in
cart-pole, for placing the pole back on the robots hand) or
supervision (e.g., for safety during the execution of the trial).
Generalizing a teacher’s demonstration or a previously learned
policy to new situations may reduce both the complexity of
the task and the number of required samples. For example, the
overall shape of table tennis forehands are very similar when
the swing is adapted to varied trajectories of the incoming
ball and a different targets on the opponent’s court. Here, the
human player has learned by trial and error how he has to adapt
the global parameters of a generic strike to various situations
[10]. Hence, a reinforcement learning method for acquiring
and refining meta-parameters of pre-structured primitive move-
ments becomes an essential next step, which we will address
in this paper.

We present current work on automatic meta-parameter
acquisition for motor primitives by reinforcement learning.
We focus on learning the mapping from situations to meta-



parameters and how to employ these in dynamical systems
motor primitives. We extend the motor primitives of [1] with
a learned meta-parameter function and re-frame the problem
as an episodic reinforcement learning scenario. In order to
obtain an algorithm for fast reinforcement learning of meta-
parameters, we view reinforcement learning as a reward-
weighted self-imitation [11], [6].

As it may be hard to realize a parametrized representation
for meta-parameter determination, we reformulate the reward-
weighted regression [11] in order to obtain a Cost-regularized
Kernel Regression (CrKR) that is related to Gaussian process
regression [12]. We compare the Cost-regularized Kernel Re-
gression with a traditional policy gradient algorithm [3] and
the reward-weighted regression [11] on a toy problem in order
to show that it outperforms available previously developed
approaches. As complex motor control scenarios, we evaluate
the algorithm in the acquisition of flexible motor primitives
for dart games such as Around the Clock [13] and for table
tennis.

II. META-PARAMETER LEARNING FOR MOTOR
PRIMITIVES

The goal of this paper is to show that elementary movements
can be generalized by modifying only the meta-parameters of
the primitives using learned mappings. In Section II-A, we first
review how a single primitive movement can be represented
and learned. We discuss how such meta-parameters may be
able to adapt the motor primitive spatially and temporally
to the new situation. In order to develop algorithms that
learn to automatically adjust such motor primitives, we model
meta-parameter self-improvement as an episodic reinforce-
ment learning problem in Section II-B. While this problem
could in theory be treated with arbitrary reinforcement learning
methods, the availability of few samples suggests that more
efficient, task appropriate reinforcement learning approaches
are needed. To avoid the limitations of parametric function
approximation, we aim for a kernel-based approach. When
a movement is generalized, new parameter settings need to
be explored. Hence, a predictive distribution over the meta-
parameters is required to serve as an exploratory policy.
These requirements lead to the method which we derive
in Section II-C and employ for meta-parameter learning in
Section II-D.

A. Motor Primitives with Meta-Parameters

In this section, we review how the dynamical systems motor
primitives [1], [2] can be used for meta-parameter learning.
The dynamical system motor primitives [1] are a powerful
movement representation that allows ensuring the stability of
the movement, choosing between a rhythmic and a discrete
movement and is invariant under rescaling of both duration
and movement amplitude. These modification parameters can
become part of the meta-parameters of the movement.

In this paper, we focus on single stroke movements which
appear frequently in human motor control [14], [2]. Therefore,
we will always focus on the discrete version of the dynamical

system motor primitives in this paper (however, the results
may generalize well to rhythmic motor primitives and hybrid
settings). We use the most recent formulation of the discrete
dynamical systems motor primitives [2] where the phase z of
the movement is represented by a single first order system

ż = −ταzz. (1)

This canonical system has the time constant τ = 1/T where
T is the duration of the motor primitive and a parameter
αz , which is chosen such that z ≈ 0 at T . Subsequently,
the internal state x of a second system is chosen such that
positions q of all degrees of freedom are given by q = x1,
the velocities by q̇ = τx2 = ẋ1 and the accelerations by
q̈ = τ ẋ2. The learned dynamics of Ijspeert motor primitives
can be expressed in the following form

ẋ2 = ταx (βx (g − x1)− x2) + τAf (z) , (2)
ẋ1 = τx2.

This set of differential equations has the same time constant
τ as the canonical system and parameters αx, βx are set
such that the system is critically damped. The goal param-
eter g, a transformation function f and an amplitude ma-
trix A = diag (a1, a2, . . . , aI), with the amplitude modifier
a = [a1, a2, . . . , aI ] allow representing complex movements.
In [2], the authors use a = g−x0

1, with the initial position x0
1,

which ensures linear scaling. Other choices are possibly better
suited for specific tasks, see for example [15]. The transfor-
mation function f (z) alters the output of the first system, in
Equation (1), so that the second system in Equation (2), can
represent complex nonlinear patterns and is given by

f (z) =
∑N

n=1ψn (z) θnz. (3)

Here, θn contains the nth adjustable parameter of all degrees
of freedom, N is the number of parameters per degree of free-
dom, and ψn(z) are the corresponding weighting functions [2].
Normalized Gaussian kernels are used as weighting functions
given by

ψn =
exp

(
−hn (z − cn)2

)
∑N

m=1 exp
(
−hm (z − cm)2

) . (4)

These weighting functions localize the interaction in phase
space using the centers cn and widths hn. As z ≈ 0 at T , the
influence of the transformation function f (z) in Equation (3)
vanishes and the system stays at the goal position g. Note
that the degrees of freedom (DoF) are usually all modeled
independently in the second system in Equation (2). All DoFs
are synchronous as the dynamical systems for all DoFs start
at the same time, have the same duration and the shape of
the movement is generated using the transformation f (z) in
Equation (3), which is learned as a function of the shared
canonical system in Equation (1).

One of the biggest advantages of this motor primitive frame-
work [1], [2] is that the second system in Equation (2), is linear
in the shape parameters θ. Therefore, these parameters can



be obtained efficiently, and the resulting framework is well-
suited for imitation [1] and reinforcement learning [6]. The
resulting policy is invariant under transformations of the initial
position x0

1, the goal g, the amplitude A and the duration T
[1]. These four modification parameters can be used as the
meta-parameters γ of the movement. Obviously, we can make
more use of the motor primitive framework by adjusting the
meta-parameters γ depending on the current situation or state
s according to a meta-parameter function γ(s). The state s
can for example contain the current position, velocity and
acceleration of the robot and external objects, as well as the
target to be achieved. This paper focuses on learning the meta-
parameter function γ(s) by episodic reinforcement learning.

Illustration of the Learning Problem: As an illustration
of the meta-parameter learning problem, we take a 2D dart
throwing task with a dart on a sled which is illustrated in
Figure 1 (in Section III-B, we will expand this example to a
robot application). Here, the desired skill is to hit a specified
point on a wall with a dart. The dart is placed on the launcher
and held there by friction. The motor primitive corresponds
to the throwing of the dart. When modeling a single darts
movement with dynamical systems motor primitives [1], the
combination of backward and throwing motion would be
represented by one movement primitive and can be learned by
determining the movement parameters θ. These parameters
can either be estimated by imitation learning or acquired
by reinforcement learning. The dart’s impact position can be
adapted to a desired target by changing the velocity and the
angle at which the dart leaves the launcher. These variables
can be influenced by changing the meta-parameters of the
motor primitive such as the final position of the launcher and
the duration of the throw. The state consists of the current
position of the hand and the desired position on the target.
If the thrower is always at the same distance from the wall
the two positions can be equivalently expressed as the vertical
distance. The meta-parameter function γ(s) maps the state (the
relative height) to the meta-parameters γ (the final position g
and the duration of the motor primitive T ).

The approach presented in this paper is applicable to any
movement representation that has meta-parameters, i.e., a
small set of parameters that allows to modify the movement.
In contrast to [16], [17], [18] our approach does not require
explicit (re)planning of the motion.

In the next sections, we derive and apply an appropriate
reinforcement learning algorithm.

B. Problem Statement: Meta-Parameter Self-Improvement

The problem of meta-parameter learning is to find a stochas-
tic policy π(γ|x) = p(γ|s) that maximizes the expected return

J(π) =
ˆ

S
p(s)
ˆ

G
π(γ|s)R(s,γ)dγ ds, (5)

where R(s,γ) denotes all the rewards following the selection
of the meta-parameter γ according to a situation described by
state s. The return of an episode is R(s,γ) = T−1

∑T
t=0 r

t

with number of steps T and rewards rt. For a parametrized
policy π with parameters w it is natural to first try a policy

Algorithm 1: Meta-Parameter Learning
Preparation steps:

Learn one or more motor primitives by imitation and/or
reinforcement learning (yields shape parameters θ).

Determine initial state s0, meta-parameters γ0, and cost C0

corresponding to the initial motor primitive.
Initialize the corresponding matrices S,Γ,C.
Choose a kernel k,K.
Set a scaling parameter λ.

For all iterations j:
Determine the state sj specifying the situation.
Calculate the meta-parameters γj by:

Determine the mean of each meta-parameter i
γi(s

j) = k(sj)T (K + λC)−1 Γi,
Determine the variance
σ2(sj) = k(sj , sj)− k(sj)T (K + λC)−1 k(sj),

Draw the meta-parameters from a Gaussian distribution
γj ∼ N (γ|γ(sj), σ2(sj)I).

Execute the motor primitive using the new meta-parameters.
Calculate the cost cj at the end of the episode.
Update S,Γ,C according to the achieved result.

gradient approach such as finite-difference methods, vanilla
policy gradient approaches and natural gradients3. Reinforce-
ment learning of the meta-parameter function γ(s) is not
straightforward as only few examples can be generated on
the real system and trials are often quite expensive. The credit
assignment problem is non-trivial as the whole movement is
affected by every change in the meta-parameter function. Early
attempts using policy gradient approaches resulted in tens of
thousands of trials even for simple toy problems, which is not
feasible on a real system.

Dayan & Hinton [19] showed that an immediate reward
can be maximized by instead minimizing the Kullback-Leibler
divergence D(π(γ|s)R(s,γ)||π′(γ|s)) between the reward-
weighted policy π(γ|s) and the new policy π′(γ|s). Williams
[20] suggested to use a particular policy in this context; i.e.,
the policy

π(γ|s) = N (γ|γ(s), σ2(s)I),

where we have the deterministic mean policy γ(s) = φ(s)Tw
with basis functions φ(s) and parameters w as well as the vari-
ance σ2(s) that determines the exploration ε ∼ N (0, σ2(s)I).
The parameters w can then be adapted by reward-weighted
regression in an immediate reward [11] or episodic rein-
forcement learning scenario [6]. The reasoning behind this
reward-weighted regression is that the reward can be treated
as an improper probability distribution over indicator variables
determining whether the action is optimal or not.

C. A Task-Appropriate Reinforcement Learning Algorithm

Designing good basis functions is challenging, a nonpara-
metric representation is better suited in this context. There
is an intuitive way of turning the reward-weighted regression
into a Cost-regularized Kernel Regression. The kernelization
of the reward-weighted regression can be done straightfor-
wardly (similar to Section 6.1 of [21] for regular supervised
learning). Inserting the reward-weighted regression solution
w = (ΦTRΦ + λI)−1ΦTRΓi, and using the Woodbury
formula (ΦTRΦ + λI)ΦT = ΦTR(ΦΦT + λR−1), we

3While we will denote the shape parameters by θ, we denote the parameters
of the meta-parameter function by w.
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Figure 2: This figure illustrates the meaning of policy improvements with Cost-regularized Kernel Regression. Each sample
consists of a state, a meta-parameter and a cost where the cost is indicated the blue error bars. The red line represents the
improved mean policy, the dashed green lines indicate the exploration/variance of the new policy. For comparison, the gray
lines show standard Gaussian process regression. As the cost of a data point is equivalent to having more noise, pairs of states
and meta-parameter with low cost are more likely to be reproduced than others with high costs.

transform reward-weighted regression into a Cost-regularized
Kernel Regression

γ̄i = φ(s)Tw = φ(s)T
(
ΦTRΦ + λI

)−1

ΦTRΓi

= φ(s)TΦT
(
ΦΦT + λR−1

)−1

Γi, (6)

where the rows of Φ correspond to the basis functions φ(si) =
Φi of the training examples, Γi is a vector containing the
training examples for meta-parameter component γi, and λ is
a ridge factor. Next, we assume that the accumulated rewards
Rk are strictly positive Rk > 0 and can be transformed into
costs by ck = 1/Rk. Hence, we have a cost matrix C =
R−1 = diag(R−1

1 , . . . , R−1
n ) with the cost of all n data points.

After replacing k(s) = φ(s)TΦT and K = ΦΦT, we obtain
the Cost-regularized Kernel Regression

γ̄i = γi(s) = k(s)T (K + λC)−1 Γi,

which gives us a deterministic policy. Here, costs corresponds
to the uncertainty about the training example. Thus, a high cost
is incurred for being further away from the desired optimal
solution at a point. In our formulation, a high cost therefore
corresponds to a high uncertainty of the prediction at this
point.

In order to incorporate exploration, we need to have a
stochastic policy and, hence, we need a predictive distribution.
This distribution can be obtained by performing the policy
update with a Gaussian process regression and we directly see
from the kernel ridge regression

σ2(s) = k(s, s) + λ− k(s)T (K + λC)−1 k(s),

where k(s, s) = φ(s)Tφ(s) is the distance of a point to itself.
We call this algorithm Cost-regularized Kernel Regression.

The algorithm corresponds to a Gaussian process regression
where the costs on the diagonal are input-dependent noise
priors. Gaussian processes have been used previously for
reinforcement learning [22] in value function based approaches
while here we use them to learn the policy.

If several sets of meta-parameters have similarly low costs
the algorithm’s convergence depends on the order of samples.
The cost function should be designed to avoid this behavior
and to favor a single set. The exploration has to be restricted
to safe meta-parameters.

D. Meta-Parameter Learning by Reinforcement Learning
As a result of Section II-C, we have a framework of

motor primitives as introduced in Section II-A that we can
use for reinforcement learning of meta-parameters as outlined
in Section II-B. We have generalized the reward-weighted
regression policy update to instead become a Cost-regularized
Kernel Regression update where the predictive variance is
used for exploration. In Algorithm 1, we show the complete
algorithm resulting from these steps.

The algorithm receives three inputs, i.e., (i) a motor prim-
itive that has associated meta-parameters γ, (ii) an initial ex-
ample containing state s0, meta-parameter γ0 and cost C0, as
well as (iii) a scaling parameter λ. The initial motor primitive
can be obtained by imitation learning [1] and, subsequently,
improved by parametrized reinforcement learning algorithms
such as policy gradients [3] or Policy learning by Weighting
Exploration with the Returns (PoWER) [6]. The demonstration
also yields the initial example needed for meta-parameter
learning. While the scaling parameter is an open parameter, it
is reasonable to choose it as a fraction of the average cost and
the output noise parameter (note that output noise and other
possible hyper-parameters of the kernel can also be obtained
by approximating the unweighted meta-parameter function).

Illustration of the Algorithm: In order to illustrate this
algorithm, we will use the example of the 2D dart throwing
task introduced in Section II-A. Here, the robot should throw
darts accurately while not destroying its mechanics. Hence,
the cost corresponds to error between desired goal and impact
point as well as the absolute velocity of the end-effector. The
initial policy is based on a prior, illustrated in Figure 2(a), that
has a variance for initial exploration (it often makes sense to
start with a uniform prior). This variance is used to enforce
exploration. To throw a dart, we sample the meta-parameters
from the policy based on the current state. We observe the
outcome of the trial, calculate the cost, and use it to update the
policy. If the cost is large (for example the impact is far from
the target), the variance of the policy is large as it may still
be improved and therefore needs exploration. Furthermore, the
mean of the policy is shifted only slightly towards the observed
example as we are uncertain about the optimality of this action.
If the cost is small, we know that we are close to an optimal



10
2

10
4

10
6

20

30

40

50

60

70

80

90

100

number of rollouts

av
er

ag
e 

co
st

(a) Velocity

10
2

10
4

10
6

0

0.5

1

1.5

2

number of rollouts

av
er

ag
e 

co
st

(b) Precision

10
2

10
4

10
6

0.5

1

1.5

2

2.5

3

number of rollouts

av
er

ag
e 

co
st

(c) Combined

 

 

Finite Difference Gradient Reward−weighted Regression Cost−regularized Kernel Regression

Figure 3: This figure shows the performance of the compared algorithms averaged over 10 complete learning runs. Cost-
regularized Kernel Regression finds solutions with the same final performance two orders of magnitude faster than the finite
difference gradient (FD) approach and twice as fast as the reward-weighted regression. At the beginning FD often is highly
unstable due to our attempts of keeping the overall learning speed as high as possible to make it a stronger competitor. The
lines show the median and error bars indicate standard deviation. The initialization and the initial costs are identical for all
approaches. However, the omission of the first twenty rollouts was necessary to cope with the logarithmic rollout axis.

policy and only have to search in a small region around the
observed trial. The effects of the cost on the mean and the
variance are illustrated in Figure 2(b). Each additional sample
refines the policy and the overall performance improves (see
Figure 2(c)). For the dart throwing task, the mapping between
the state and the meta-parameter is not unique. The same
height can be achieved by the combination of a high velocity
and a low angle or, alternatively, using a low velocity and a
high angle. Averaging the two possibilities is likely to generate
inconsistent solutions and therefore supervised learning is not
applicable here. The policy update hence must favor the possi-
bility with the lower cost and ignore the other one. Algorithm 1
fulfills this requirement as illustrated in Figure 2(d).

III. EVALUATION

In Section II, we have introduced both a framework for
meta-parameter self-improvement as well as an appropriate
reinforcement learning algorithm used in this framework. In
this section, we will first show that the presented reinforcement
learning algorithm yields higher performance than off-the shelf
approaches. Hence, we compare it on a simple planar cannon
shooting problem [23] with the preceding reward-weighted
regression and an off-the-shelf finite difference policy gradient
approach.

The resulting meta-parameter learning framework can be
used in a variety of settings in robotics. We consider two sce-
narios here, i.e., (i) dart throwing with a simulated robot arm,
a real Barrett WAM and the JST-ICORP/SARCOS humanoid
robot CBi, and (ii) table tennis with a simulated robot arm
and a real Barrett WAM. Some of the real-robot experiments
are still partially work in progress.

A. Benchmark Comparison

In the first task, we only consider a simple simulated planar
cannon shooting where we benchmark our Reinforcement
Learning by Cost-regularized Kernel Regression approach

against a finite difference gradient estimator and the reward-
weighted regression. Here, we want to learn an optimal policy
for a 2D toy cannon environment similar to [23].

The setup is given as follows: A toy cannon is at a fixed
location [0.0, 0.1]m. The meta-parameters are the angle with
respect to the ground and the speed of the cannon ball. In
this benchmark we do not employ the motor primitives but
set the parameters directly. The flight of the canon ball is
simulated as ballistic flight of a point mass with Stokes’s
drag as wind model. The cannon ball is supposed to hit the
ground at a desired distance. The desired distance [1..3]m
and the wind speed [0..1]m/s, which is always horizontal,
are used as input parameters, the velocities in horizontal and
vertical directions are predicted (which influences the angle
and the speed of the ball leaving the cannon). Lower speed
can be compensated by a larger angle. Thus, there are different
possible policies for hitting a target; we intend to learn the
one which is optimal for a given cost function. This cost
function consists of the sum of the squared distance between
the desired and the actual impact point and one hundredth of
the squared norm of the velocity at impact of the cannon ball.
It corresponds to maximizing the precision while minimizing
the employed energy according to the chosen weighting. All
approaches performed well in this setting, first driving the
position error to zero and, subsequently, optimizing the impact
velocity. The experiment was initialized with [1, 10]m/s as
initial ball velocities and 1m/s as wind velocity. This setting
corresponds to a very high parabola, which is far from optimal.
For plots, we evaluate the policy on a test set of 25 uniformly
randomly chosen points that remain the same throughout of
the experiment and are never used in the learning process but
only to generate Figure 3.

We compare our novel algorithm to a finite difference
policy gradient (FD) method [3] and to the reward-weighted
regression (RWR) [11]. The FD method uses a parametric
policy that employs radial basis functions in order to represent



(a) The robot is in
the rest posture and the
dart is placed on the
launcher.

(b) The arm moves back. (c) The arm moves for-
ward on an arc.

(d) The arm stops. (e) The dart is carried on
by its momentum.

(f) The dart hits the
board.

Figure 4: This figure shows a dart throw in a physically realistic simulation.

(a) The robot is in the
rest posture and the dart
is placed in its hand.

(b) The arm moves back. (c) The arm moves for-
ward on an arc.

(d) The arm continues
moving.

(e) The dart is released
and the arm follows
through.

(f) The arm stops and the
dart hits the board.

Figure 5: This figure shows a dart throw on the real JST-ICORP/SARCOS humanoid robot CBi.

the policy and adds Gaussian exploration. The learning rate
as well as the magnitude of the perturbations were tuned for
best performance. We used 51 sets of uniformly perturbed
parameters for each update step. The FD algorithm converges
after approximately 2000 batch gradient evaluations, which
corresponds to 2, 550, 000 shots with the toy cannon.

The RWR method uses the same parametric policy as the
finite difference gradient method. Exploration is achieved by
adding Gaussian noise to the mean policy . All open param-
eters were tuned for best performance. The RWR algorithm
converges after approximately 40, 000 shots with the toy can-
non. For the Cost-regularized Kernel Regression (CrKR) the
inputs are chosen randomly from a uniform distribution. We
use Gaussian kernels and the open parameters were optimized
by cross-validation on a small test set prior to the experiment.
Each trial is added as a new training point if it landed in the
desired distance range. The CrKR algorithm converges after
approximately 20, 000 shots with the toy cannon.

After convergence, the costs of CrKR are the same as for
RWR and slightly lower than those of the FD method. The
CrKR method needs two orders of magnitude fewer shots
than the FD method. The RWR approach requires twice the
shots of CrKR demonstrating that a non-parametric policy, as
employed by CrKR, is better adapted to this class of problems
than a parametric policy. The squared error between the actual
and desired impact is approximately 5 times higher for the
finite difference gradient method, see Figure 3.

B. Dart-Throwing

Now, we turn towards the complete framework, i.e., we
intend to learn the meta-parameters for motor primitives in
discrete movements. We compare the Cost-regularized Kernel
Regression (CrKR) algorithm to the reward-weighted regres-
sion (RWR). As a sufficiently complex scenario, we chose a
robot dart throwing task inspired by [23]. However, we take
a more complicated scenario and choose dart games such as

Around the Clock [13] instead of simple throwing at a fixed
location. Hence, it will have an additional parameter in the
state depending on the location on the dartboard that should
come next in the sequence. The acquisition of a basic motor
primitive is achieved using previous work on imitation learning
[1]. Only the meta-parameter function is learned using CrKR
or RWR.

The dart is placed on a launcher attached to the end-effector
and held there by stiction. We use the Barrett WAM robot arm
in order to achieve the high accelerations needed to overcome
the stiction. See Figure 4, for a complete throwing movement.
The motor primitive is trained by imitation learning with
kinesthetic teach-in. We use the Cartesian coordinates with
respect to the center of the dart board as inputs. The parameter
for the final position, the duration of the motor primitive and
the angle around the vertical axis are the meta-parameters.
The popular dart game Around the Clock requires the player
to hit the numbers in ascending order, then the bulls-eye.
As energy is lost overcoming the stiction of the launching
sled, the darts fly lower and we placed the dartboard lower
than official rules require. The cost function is the sum of
ten times the squared error on impact and the velocity of the
motion. After approximately 1000 throws the algorithms have
converged but CrKR yields a high performance already much
earlier (see Figure 6). We again used a parametric policy with
radial basis functions for RWR. Designing a good parametric
policy proved very difficult in this setting as is reflected by
the poor performance of RWR.

This experiment is also being carried out on two real,
physical robots, i.e., a Barrett WAM and the humanoid robot
CBi (JST-ICORP/SARCOS). CBi was developed within the
framework of the JST-ICORP Computational Brain Project at
ATR Computational Neuroscience Labs. The hardware of the
robot was developed by the American robotic development
company SARCOS. CBi can open and close the fingers which
helps for more human-like throwing instead of the launcher
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Figure 6: This figure shows the cost function of the dart-
throwing task for a whole game Around the Clock in each
rollout. The costs are averaged over 10 runs with the error-
bars indicating standard deviation.

employed by the Barrett WAM. See Figure 5 for a throwing
movement. Parts of these experiments are still in-progress.

C. Table Tennis

In the second evaluation of the complete framework, we use
it for hitting a table tennis ball in the air. The setup consists
of a ball gun that serves to the forehand of the robot, a Barrett
WAM and a standard sized table. The movement of the robot
has three phases. The robot is in a rest posture and starts
to swing back when the ball is launched. During this swing-
back phase, the open parameters for the stroke are predicted.
The second phase is the hitting phase which ends with the
contact of the ball and racket. In the final phase the robot
gradually ends the stroking motion and returns to the rest
posture. See Figure 8 for an illustration of a complete episode.
The movements in the three phases are represented by motor
primitives obtained by imitation learning.

The meta-parameters are the joint positions and velocities
for all seven degrees of freedom at the end of the second
phase (the instant of hitting the ball) and a timing parameter
that controls when the swing back phase is transitioning to
the hitting phase. We learn these 15 meta-parameters as a
function of the ball positions and velocities when it is over the
net. We employed a Gaussian kernel and optimized the open
parameters according to typical values for the input and output.
As cost function we employ the metric distance between the
center of the paddle and the center of the ball at the hitting
time. The policy is evaluated every 50 episodes with 25 ball
launches picked randomly at the beginning of the learning. We
initialize the behavior with five successful strokes observed
from another player. After initializing the meta-parameter
function with only these five initial examples, the robot misses
ca. 95% of the balls as shown in Figure 7. Trials are only used
to update the policy if the robot has successfully hit the ball.
Figure 9 illustrates different positions of the ball the policy is
capable of dealing with after the learning. Figure 7 illustrates
the costs over all episodes. Preliminary results suggest that the
resulting policy performs well both in simulation and for the
real system. We are currently in the process of executing this
experiment also on the real Barrett WAM.
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Figure 7: This figure shows the cost function of the table
tennis task averaged over 10 runs with the error-bars indicating
standard deviation. The red line represents the percentage of
successful hits and the blue line the average cost. At the
beginning the robot misses the ball 95% of the episodes and
on average by 50 cm. At the end of the learning the robot hits
almost all balls.

IV. CONCLUSION & FUTURE WORK

In this paper, we have studied the problem of meta-
parameter learning for motor primitives. It is an essential
step towards applying motor primitives for learning complex
motor skills in robotics more flexibly. We have discussed
an appropriate reinforcement learning algorithm for mapping
situations to meta-parameters.

We show that the necessary mapping from situation to
meta-parameter can be learned using a Cost-regularized Kernel
Regression (CrKR) while the parameters of the motor primi-
tive can still be acquired through traditional approaches. The
predictive variance of CrKR is used for exploration in on-
policy meta-parameter reinforcement learning. We compare
the resulting algorithm in a toy scenario to a policy gradient
algorithm with a well-tuned policy representation and the
reward-weighted regression. We show that our CrKR algorithm
can significantly outperform these preceding methods. To
demonstrate the system in a complex scenario, we have chosen
the Around the Clock dart throwing game and table tennis
implemented both on simulated and real robots.

Adapting movements to situations is also discussed in [16]
in a supervised learning setting. Their approach is based on
predicting a trajectory from a previously demonstrated set and
refining it by motion planning. The authors note that kernel
ridge regression performed poorly for the prediction if the new
situation is far from previously seen ones as the algorithm
yields the global mean. In our approach we employ a cost
weighted mean that overcomes this problem. If the situation
is far from previously seen ones, large exploration will help
to find a solution.

Future work will require to sequence different motor prim-
itives by a supervisory layer. This supervisory layer would
for example in a table tennis task decide between a forehand
motor primitive and a backhand motor primitive, the spatial
meta-parameter and the timing of the motor primitive would
be adapted according to the incoming ball, and the motor
primitive would generate the trajectory. This supervisory layer
could be learned by an hierarchical reinforcement learning



(a) The robot is the rest pos-
ture.

(b) The arm swings back. (c) The arm strikes the ball. (d) The arm follows through
and decelerates.

(e) The arm returns to the rest
posture.

Figure 8: This figure shows a table tennis stroke on the real Barrett WAM.

(a) Left. (b) Half left. (c) Center high. (d) Center low. (e) Right.

Figure 9: This figure shows samples of the learned forehands. Note that this figure only illustrates the learned meta-parameter
function in this context but cannot show timing and velocity and it requires a careful observer to note the important configuration
differences resulting from the meta-parameters.

approach [24] (as introduced in the early work by [25]).
In this framework, the motor primitives with meta-parameter
functions could be seen as robotics counterpart of options [9]
or macro-actions [26].
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